论文标题

大都市杂货样本者的差异

Variance Reduction for Metropolis-Hastings Samplers

论文作者

Alexopoulos, Angelos, Dellaportas, Petros, Titsias, Michalis K.

论文摘要

我们介绍了一个通用框架,该框架构建了估计器,估计器的差异降低了随机行走和大都市调整后的Langevin算法。最终的估计器需要可忽略不计的计算成本,并使用大都市算法的所有建议值以后处理方式得出。通过与马尔可夫链的目标密度相关的泊松方程的近似解,通过产生控制变化来实现差异。所提出的方法基于使用高斯近似目标密度,然后利用泊松方程的精确溶液来构成高斯情况。这导致了使用两个关键元素的估计器:(i)与泊松方程的控制变化,该方程在提案分布下包含棘手的期望,(ii)第二个控制变量以减少后一种可ract的期望的蒙特卡洛估计值的方差。模拟的数据示例用于说明高斯目标病例中实现的令人印象深刻的差异,以及当违反目标高斯假设时的相应效果。关于贝叶斯逻辑回归和随机波动率模型的真实数据示例验证了通过可忽略不计的额外计算成本实现大量差异。

We introduce a general framework that constructs estimators with reduced variance for random walk Metropolis and Metropolis-adjusted Langevin algorithms. The resulting estimators require negligible computational cost and are derived in a post-process manner utilising all proposal values of the Metropolis algorithms. Variance reduction is achieved by producing control variates through the approximate solution of the Poisson equation associated with the target density of the Markov chain. The proposed method is based on approximating the target density with a Gaussian and then utilising accurate solutions of the Poisson equation for the Gaussian case. This leads to an estimator that uses two key elements: (i) a control variate from the Poisson equation that contains an intractable expectation under the proposal distribution, (ii) a second control variate to reduce the variance of a Monte Carlo estimate of this latter intractable expectation. Simulated data examples are used to illustrate the impressive variance reduction achieved in the Gaussian target case and the corresponding effect when target Gaussianity assumption is violated. Real data examples on Bayesian logistic regression and stochastic volatility models verify that considerable variance reduction is achieved with negligible extra computational cost.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源