论文标题
压缩预测信息编码
Compressed Predictive Information Coding
论文作者
论文摘要
无监督的学习在许多领域(例如人工智能,机器学习和神经科学)中起着重要作用。与静态数据相比,提取用于动态数据的低维结构的方法正在滞后。我们开发了一种新型的信息理论框架,即压缩预测信息编码(CPIC),以从动态数据中提取有用的表示。 CPIC选择性地将过去(输入)投射到线性子空间中,该子空间可以预测未来投射的压缩数据(输出)。我们框架的关键见解是通过最大程度地降低压缩复杂性并最大化潜在空间中的预测信息来学习表示形式。我们得出CPIC损失的变异界限,该损失诱导潜在空间捕获最大预测性的信息。通过利用相互信息的界限,我们的变异界限是可以解决的。我们发现,在编码器中引入随机性有助于更好地表示。此外,与高斯假设下的估计相比,互信息估计的变异方法的性能更好。我们证明,CPIC能够恢复具有低信噪比的嘈杂动力学系统的潜在空间,并提取了神经科学数据中外源变量的提取功能。
Unsupervised learning plays an important role in many fields, such as artificial intelligence, machine learning, and neuroscience. Compared to static data, methods for extracting low-dimensional structure for dynamic data are lagging. We developed a novel information-theoretic framework, Compressed Predictive Information Coding (CPIC), to extract useful representations from dynamic data. CPIC selectively projects the past (input) into a linear subspace that is predictive about the compressed data projected from the future (output). The key insight of our framework is to learn representations by minimizing the compression complexity and maximizing the predictive information in latent space. We derive variational bounds of the CPIC loss which induces the latent space to capture information that is maximally predictive. Our variational bounds are tractable by leveraging bounds of mutual information. We find that introducing stochasticity in the encoder robustly contributes to better representation. Furthermore, variational approaches perform better in mutual information estimation compared with estimates under a Gaussian assumption. We demonstrate that CPIC is able to recover the latent space of noisy dynamical systems with low signal-to-noise ratios, and extracts features predictive of exogenous variables in neuroscience data.