论文标题

干预措施,哪里以及如何?因果模型的实验设计

Interventions, Where and How? Experimental Design for Causal Models at Scale

论文作者

Tigas, Panagiotis, Annadani, Yashas, Jesson, Andrew, Schölkopf, Bernhard, Gal, Yarin, Bauer, Stefan

论文摘要

由于数据有限和非识别性,观察性和介入数据的因果发现是具有挑战性的:在估计基本结构因果模型(SCM)时引入不确定性的因素。根据这两个因素引起的不确定性选择实验(干预措施)可以加快SCM的识别。来自有限数据的因果发现实验设计中的现有方法依赖于SCM的线性假设,或者仅选择干预目标。这项工作将贝叶斯因果发现的最新进展纳入了贝叶斯最佳实验设计框架中,从而使大型非线性SCM的积极因果发现同时选择了介入目标和值。我们证明了对线性和非线性SCM的合成图(ERDOS-Rènyi,bree)以及在\ emph {silico}单细胞基因调节网络数据集的综合图(Erdos-rènyi,免费)的性能。

Causal discovery from observational and interventional data is challenging due to limited data and non-identifiability: factors that introduce uncertainty in estimating the underlying structural causal model (SCM). Selecting experiments (interventions) based on the uncertainty arising from both factors can expedite the identification of the SCM. Existing methods in experimental design for causal discovery from limited data either rely on linear assumptions for the SCM or select only the intervention target. This work incorporates recent advances in Bayesian causal discovery into the Bayesian optimal experimental design framework, allowing for active causal discovery of large, nonlinear SCMs while selecting both the interventional target and the value. We demonstrate the performance of the proposed method on synthetic graphs (Erdos-Rènyi, Scale Free) for both linear and nonlinear SCMs as well as on the \emph{in-silico} single-cell gene regulatory network dataset, DREAM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源