论文标题
Legalvis:探索和推断法律文件中的先例引用
LegalVis: Exploring and Inferring Precedent Citations in Legal Documents
论文作者
论文摘要
为了减少巴西司法案件的悬而未决的裁决,国民大会修改了宪法,允许巴西最高法院(STF)创建具有约束力的先例(BPS),即执行和较低司法部门的一系列理解。 STF的大法官经常在决策中引用58个现有的BP,这是司法专家可以识别和分析此类引用的主要意义。为了帮助解决这个问题,我们提出了Legalvis,这是一种基于网络的视觉分析系统,旨在支持引用或可能引用BP的法律文档的分析。我们将识别潜在引用(即非解释)确定为分类问题的问题进行建模。但是,简单的分数不足以解释结果。这就是为什么我们使用可解释性的机器学习方法来解释每个已确定的引用背后的原因。为了对文档和BP进行引人注目的视觉探索,LegalVIS包括三个交互式视觉组件:第一个概述显示时间模式的数据概述,第二个允许通过主题进行过滤和分组相关文档,最后一个显示了文档的文本旨在通过指出哪些款的输出,即使不是指定了BP,即使是指定了BP,即使是指定了BP的典范,即我们评估了我们的识别模型,并获得了96%的精度;我们还对结果进行了定量和定性分析。通过两种使用情况和六个领域专家的反馈来评估法律活动的有用性和有效性。
To reduce the number of pending cases and conflicting rulings in the Brazilian Judiciary, the National Congress amended the Constitution, allowing the Brazilian Supreme Court (STF) to create binding precedents (BPs), i.e., a set of understandings that both Executive and lower Judiciary branches must follow. The STF's justices frequently cite the 58 existing BPs in their decisions, and it is of primary relevance that judicial experts could identify and analyze such citations. To assist in this problem, we propose LegalVis, a web-based visual analytics system designed to support the analysis of legal documents that cite or could potentially cite a BP. We model the problem of identifying potential citations (i.e., non-explicit) as a classification problem. However, a simple score is not enough to explain the results; that is why we use an interpretability machine learning method to explain the reason behind each identified citation. For a compelling visual exploration of documents and BPs, LegalVis comprises three interactive visual components: the first presents an overview of the data showing temporal patterns, the second allows filtering and grouping relevant documents by topic, and the last one shows a document's text aiming to interpret the model's output by pointing out which paragraphs are likely to mention the BP, even if not explicitly specified. We evaluated our identification model and obtained an accuracy of 96%; we also made a quantitative and qualitative analysis of the results. The usefulness and effectiveness of LegalVis were evaluated through two usage scenarios and feedback from six domain experts.