论文标题
亚临界单调细胞自动机
Subcritical monotone cellular automata
论文作者
论文摘要
我们在$ \ mathbb {z}^d $中使用随机初始配置来研究单调蜂窝自动机(也称为$ \ mathcal {u} $ - bootstrap percolation)。证实了Balister,Bollobás,Przykucki和Smith的猜想,他们证明了相应的结果在两个维度上,我们表明所有亚临界模型的关键概率均不零。
We study monotone cellular automata (also known as $\mathcal{U}$-bootstrap percolation) in $\mathbb{Z}^d$ with random initial configurations. Confirming a conjecture of Balister, Bollobás, Przykucki and Smith, who proved the corresponding result in two dimensions, we show that the critical probability is non-zero for all subcritical models.