论文标题
部分可观测时空混沌系统的无模型预测
Graph Neural Networks for Multimodal Single-Cell Data Integration
论文作者
论文摘要
多模式单细胞技术的最新进展已使从同一单元格中同时获得多个OMIC数据,从而更深入地了解细胞状态和动力学。但是,从多模式数据中学习联合表示,对模式之间的关系进行建模,更重要的是,将大量的单模式数据集纳入下游分析是一个挑战。为了应对这些挑战并相应地促进了多模式的单细胞数据分析,已经引入了三个关键任务:$ \ textit {模式预测} $,$ \ textIt {模式匹配} $和$ \ textit {internit {interion {intim interding} $。在这项工作中,我们提出了一个通用图形神经网络框架$ \ textit {scmognn} $来解决这三个任务,并表明$ \ textit {scmognn} $与最先进的艺术和常规方法相比,在所有三个任务中都表现出了卓越的结果。我们的方法是Neurips 2021竞赛的$ \ textit {模式预测} $的整体排名的官方赢家,我们方法的所有实现都已集成到舞蹈软件包〜\ url {https://github.com/github.com/omicsml/dance}中。
Recent advances in multimodal single-cell technologies have enabled simultaneous acquisitions of multiple omics data from the same cell, providing deeper insights into cellular states and dynamics. However, it is challenging to learn the joint representations from the multimodal data, model the relationship between modalities, and, more importantly, incorporate the vast amount of single-modality datasets into the downstream analyses. To address these challenges and correspondingly facilitate multimodal single-cell data analyses, three key tasks have been introduced: $\textit{modality prediction}$, $\textit{modality matching}$ and $\textit{joint embedding}$. In this work, we present a general Graph Neural Network framework $\textit{scMoGNN}$ to tackle these three tasks and show that $\textit{scMoGNN}$ demonstrates superior results in all three tasks compared with the state-of-the-art and conventional approaches. Our method is an official winner in the overall ranking of $\textit{Modality prediction}$ from NeurIPS 2021 Competition, and all implementations of our methods have been integrated into DANCE package~\url{https://github.com/OmicsML/dance}.