论文标题
电磁场基于高斯过程的空间重建
Gaussian Process-based Spatial Reconstruction of Electromagnetic fields
论文作者
论文摘要
如今,我们生活在一个拥有永久电磁场的世界中。这就提出了许多有关我们的健康和新设备部署的问题。问题在于,这些领域仍然很难轻松可视化,只有一些专家才能理解。为了解决这个问题,我们建议根据所考虑空间的所有位置的一些观察结果在空间上估计该领域的水平。这项工作提出了一种使用高斯工艺进行电磁场空间重建的算法。我们考虑传感器网络观察到的空间,物理现象。具有所选均值和协方差函数的高斯过程回归模型将实现以开发基于9个传感器的估计算法。贝叶斯推理方法用于执行协方差函数的模型选择,并从我们的数据集中学习超参数。我们介绍了提出的模型的预测性能,并将其与平均值为零的情况进行比较。结果表明,提出的基于高斯过程的预测模型仅使用9个传感器重建所有位置的EM字段。
These days we live in a world with a permanent electromagnetic field. This raises many questions about our health and the deployment of new equipment. The problem is that these fields remain difficult to visualize easily, which only some experts can understand. To tackle this problem, we propose to spatially estimate the level of the field based on a few observations at all positions of the considered space. This work presents an algorithm for spatial reconstruction of electromagnetic fields using the Gaussian Process. We consider a spatial, physical phenomenon observed by a sensor network. A Gaussian Process regression model with selected mean and covariance function is implemented to develop a 9 sensors-based estimation algorithm. A Bayesian inference approach is used to perform the model selection of the covariance function and to learn the hyperparameters from our data set. We present the prediction performance of the proposed model and compare it with the case where the mean is zero. The results show that the proposed Gaussian Process-based prediction model reconstructs the EM fields in all positions only using 9 sensors.