论文标题

图形表示超出节点和同质性的学习

Graph Representation Learning Beyond Node and Homophily

论文作者

Li, You, Lin, Bei, Luo, Binli, Gui, Ning

论文摘要

无监督的图表学习旨在将各种图形信息提炼成下游任务无形的密度向量嵌入。但是,现有的图形表示学习方法主要是在节点同义假设下设计的:连接的节点倾向于具有相似的标签并优化以节点为中心的下游任务的性能。他们的设计显然是违反了任务不足的原理,并且通常在任务中的性能不佳,例如边缘分类,要求具有超出节点视图和同义假设的信号。为了将不同的特征信号凝结到嵌入式中,本文提出了一种新型的无监督图嵌入方法,使用两个配对节点作为嵌入的基本单位,以保留节点之间的高频信号,以支持节点相关和边缘相关的任务。因此,多自制的自动编码器旨在完成两个借口任务:一个人可以更好地保留高频信号,而另一个可以增强通用性的表示。我们对基准数据集多样性的广泛实验清楚地表明,Paire的表现优于无监督的最先进的基线,最高101.1 \%的相对改进,依赖于对配对的高和低频信号的边缘分类任务,最多可提供82.5 \%\%的相对性能增益。

Unsupervised graph representation learning aims to distill various graph information into a downstream task-agnostic dense vector embedding. However, existing graph representation learning approaches are designed mainly under the node homophily assumption: connected nodes tend to have similar labels and optimize performance on node-centric downstream tasks. Their design is apparently against the task-agnostic principle and generally suffers poor performance in tasks, e.g., edge classification, that demands feature signals beyond the node-view and homophily assumption. To condense different feature signals into the embeddings, this paper proposes PairE, a novel unsupervised graph embedding method using two paired nodes as the basic unit of embedding to retain the high-frequency signals between nodes to support node-related and edge-related tasks. Accordingly, a multi-self-supervised autoencoder is designed to fulfill two pretext tasks: one retains the high-frequency signal better, and another enhances the representation of commonality. Our extensive experiments on a diversity of benchmark datasets clearly show that PairE outperforms the unsupervised state-of-the-art baselines, with up to 101.1\% relative improvement on the edge classification tasks that rely on both the high and low-frequency signals in the pair and up to 82.5\% relative performance gain on the node classification tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源