论文标题

模块和代数谐波共同体的稳定器比特体相等

The stabilizer bitorsors of the module and algebra harmonic coproducts are equal

论文作者

Enriquez, Benjamin, Furusho, Hidekazu

论文摘要

在较早的工作中,我们在这对上构建了一对“ Betti”和“ De Rham” Hopf代数以及一对模块 - 核骨,以及与这两个结构相关的比特器(将称为“模块”和“代数”稳定器Bitorsors)。我们表明,racinet的torsor是由双重散装构建的,并且多个Zeta值之间的正则关系基本上等于“模块”稳定器Bitorsor,后者包含在“代数”稳定器Bitorsor中。在本文中,我们显示了“代数”和“模块”稳定器比特斯的平等。我们将证据减少到显示相关的“代数”和“模块”等级代数的平等。表明这种平等性的论点涉及“代数”代数与线性图的内核的关系,该线性映射作为三个线性图的组成的表达,其中一个与“模块”的关系与“模块” lie代数的关系以及另一个模块的计算,而不是由Invete topologe topologe topology参数。

In earlier work, we constructed a pair of "Betti" and "de Rham" Hopf algebras and a pair of module-coalgebras over this pair, as well as the bitorsors related to both structures (which will be called the "module" and "algebra" stabilizer bitorsors). We showed that Racinet's torsor constructed out of the double shuffle and regularization relations between multiple zeta values is essentially equal to the "module" stabilizer bitorsor, and that the latter is contained in the "algebra" stabilizer bitorsor. In this paper, we show the equality of the "algebra" and "module" stabilizer bitorsors. We reduce the proof to showing the equality of the associated "algebra" and "module" graded Lie algebras. The argument for showing this equality involves the relation of the "algebra" Lie algebra with the kernel of a linear map, the expression of this linear map as a composition of three linear maps, the relation of one of them with the "module" Lie algebra and the computation of the kernel of the other one by discrete topology arguments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源