论文标题

从头开始机器学习模型中的同质冰核

Homogeneous ice nucleation in an ab initio machine learning model of water

论文作者

Piaggi, Pablo M., Weis, Jack, Panagiotopoulos, Athanassios Z., Debenedetti, Pablo G., Car, Roberto

论文摘要

分子模拟为均匀冰成核的基础微观机制提供了宝贵的见解。尽管经验模型已被广泛用于研究这种现象,但基于第一原理计算的模拟迄今已证明了过高的昂贵。在这里,我们通过使用对密度功能理论(DFT)能量和力的有效的机器学习模型来规避这一困难。我们使用播种技术和多达数十万原子的播种技术和系统在大气压力下计算大气压力的成核速率。播种技术提供的关键数量是临界簇的大小(即,以给定超饱和度群集具有相等的生长或熔化的概率),该概率与经典成核理论的方程一起使用以计算成核速率。我们发现,在中等超冷的模型的成核速率与我们计算误差内的实验测量非常吻合。我们还研究了诸如热力学驱动力,界面自由能和堆叠障碍等特性对计算速率的影响。

Molecular simulations have provided valuable insight into the microscopic mechanisms underlying homogeneous ice nucleation. While empirical models have been used extensively to study this phenomenon, simulations based on first-principles calculations have so far proven prohibitively expensive. Here, we circumvent this difficulty by using an efficient machine learning model trained on density-functional theory (DFT) energies and forces. We compute nucleation rates at atmospheric pressure, over a broad range of supercoolings, using the seeding technique and systems of up to hundreds of thousands of atoms simulated with ab initio accuracy. The key quantity provided by the seeding technique is the size of the critical cluster (i.e., a size such that the cluster has equal probabilities of growing or melting at the given supersaturation) which is used together with the equations of classical nucleation theory to compute nucleation rates. We find that nucleation rates for our model at moderate supercoolings are in good agreement with experimental measurements within the error of our calculation. We also study the impact of properties such as the thermodynamic driving force, interfacial free energy, and stacking disorder on the calculated rates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源