论文标题
产生重力波形库,具有深度学习的外来紧凑型二进制
Generating gravitational waveform libraries of exotic compact binaries with deep learning
论文作者
论文摘要
当前的重力波(GW)检测取决于理论波形的库的存在。因此,找到使用GWS的新物理学需要非标准模型的库,这在计算上要求。我们讨论如何使用深度学习框架来生成从数值相对性仿真获得的模拟数据集中“学习”的新波形。具体而言,我们使用生成对抗网络(GAN)的波甘构建。作为概念的证明,我们提供了该神经网络(nn),并从外来紧凑对象(Proca stars)的碰撞($> 500 $)波形的样本中提供了从数值相对性模拟获得的样本。将样品分为训练和验证集,我们表明,在足够多的训练时期后,NN可以产生12 \%至25 \%的合成波形,而与验证集的重叠匹配至少为95 \%。我们还证明,NN可用于预测新合成样品的重叠匹配分数,其精度为90%。这些令人鼓舞的结果是在GWS的背景下使用GAN进行数据增强和插值,以涵盖外来紧凑型二进制文件的完整参数空间,而无需进行密集的数值相对性模拟。
Current gravitational wave (GW) detections rely on the existence of libraries of theoretical waveforms. Consequently, finding new physics with GWs requires libraries of non-standard models, which are computationally demanding. We discuss how deep learning frameworks can be used to generate new waveforms "learned" from a simulation dataset obtained, say, from numerical relativity simulations. Concretely, we use the WaveGAN architecture of a generative adversarial network (GAN). As a proof of concept we provide this neural network (NN) with a sample of ($>500$) waveforms from the collisions of exotic compact objects (Proca stars), obtained from numerical relativity simulations. Dividing the sample into a training and a validation set, we show that after a sufficiently large number of training epochs the NN can produce from 12\% to 25\% of the synthetic waveforms with an overlapping match of at least 95\% with the ones from the validation set. We also demonstrate that a NN can be used to predict the overlapping match score, with 90\% of accuracy, of new synthetic samples. These are encouraging results for using GANs for data augmentation and interpolation in the context of GWs, to cover the full parameter space of, say, exotic compact binaries, without the need of intensive numerical relativity simulations.