论文标题
部分可观测时空混沌系统的无模型预测
New criterions on nonexistence of periodic orbits of planar dynamical systems and their applications
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Characterizing existence or not of periodic orbit is a classical problem and it has both theoretical importance and many real applications. Here, several new criterions on nonexistence of periodic orbits of the planar dynamical system $\dot x=y,~\dot y=-g(x)-f(x,y)y$ are obtained in this paper, and by examples showing that these criterions are applicable, but the known ones are invalid to them. Based on these criterions, we further characterize the local topological structures of its equilibrium, which also show that one of the classical results by A.F. Andreev [Amer. Math. Soc. Transl. 8 (1958), 183--207] on local topological classification of the degenerate equilibrium is incomplete. Finally, as another application of these results, we classify the global phase portraits of a planar differential system, which comes from the third question in the list of the 33 questions posed by A. Gasull and also from a mechanical oscillator under suitable restriction to its parameters.