论文标题
$ \ mathbb {z}^2 $ -subshift的有限类型的算法属性的研究中,通过水平约束进行参数化
Parametrization by Horizontal Constraints in the Study of Algorithmic Properties of $\mathbb{Z}^2$-Subshift of Finite Type
论文作者
论文摘要
$ \ mathbb {z}^2 $ -Shift有限类型的熵的熵的表征是符号动力学的标准问题。在本文中,我们以水平约束为参数研究了这些问题。我们确定多米诺骨牌问题的水平约束是不确定的,当所有正确的求职数字可以作为熵获得时,使用两种方法:要么添加到水平约束中的其他本地规则可以具有任何形状,要么只能是垂直规则。
The non-emptiness, called the Domino Problem, and the characterization of the possible entropies of $\mathbb{Z}^2$-subshifts of finite type are standard problems of symbolic dynamics. In this article we study these questions with horizontal constraints fixed beforehand as a parameter. We determine for which horizontal constraints the Domino Problem is undecidable and when all right-recursively enumerable numbers can be obtained as entropy, with two approaches: either the additional local rules added to the horizontal constraints can be of any shape, or they can only be vertical rules.