论文标题
全球吸引子的存在和解决方案的解决方案的融合在具有圆锥形奇点的流形上
Existence of global attractors and convergence of solutions for the Cahn-Hilliard equation on manifolds with conical singularities
论文作者
论文摘要
我们考虑具有圆锥形奇点的流形的Cahn-Hilliard方程,并证明了具有渐近线的高级梅林 - 贝伯夫空间的全球吸引子。我们还显示了在相同空间与平衡点的溶液的收敛性,并根据局部几何形状在锥形尖端附近提供平衡行为。
We consider the Cahn-Hilliard equation on manifolds with conical singularities and prove existence of global attractors in higher order Mellin-Sobolev spaces with asymptotics. We also show convergence of solutions in the same spaces to an equilibrium point and provide asymptotic behavior of the equilibrium near the conical tips in terms of the local geometry.