论文标题

部分可观测时空混沌系统的无模型预测

Time-varying microwave photonic filter for arbitrary waveform signal-to-noise ratio improvement

论文作者

Ma, Dong, Chen, Yang

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

A time-varying microwave photonic filter (TV-MPF) based on stimulated Brillouin scattering (SBS) is proposed and utilized to suppress the in-band noise of broadband arbitrary microwave waveforms, thereby improving the signal-to-noise ratio (SNR). The filter-controlling signal is designed according to the signal to be filtered and drives the TV-MPF so that the passband of the filter is always aligned with the frequencies of the signal to be filtered. By continuously tracking the signal spectral component, the TV-MPF only retains the spectral components of the signal and filters out the noise other than the spectral component of the signal at the current time, so as to improve the in-band SNR of the signal to be filtered. An experiment is performed. A variety of signals with different formats and in-band SNRs are used to test the noise suppression capability of the TV-MPF, and the waveform mean-square error is calculated to quantify the improvement of the signal, demonstrating the excellent adaptability of the proposed TV-MPF to different kinds of signals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源