论文标题

增强RBMLE-UCB方法,用于对线性二次系统的自适应控制

Augmented RBMLE-UCB Approach for Adaptive Control of Linear Quadratic Systems

论文作者

Mete, Akshay, Singh, Rahul, Kumar, P. R.

论文摘要

我们考虑控制未知的随机线性系统,具有二次成本 - 称为自适应LQ控制问题。我们重新审视一种称为“奖励有偏见的最大似然估计”(RBMLE)的方法,该方法是在四十多年前提出的,它早于“上限信心约束”(UCB)方法以及针对匪徒问题的“遗憾”的定义。它只是为参数估计的标准添加了具有较大奖励的术语偏爱参数。我们展示了如何对RBMLE和UCB方法进行调解,从而提出了一种增强的RBMLE-UCB算法,将RBMLE方法的惩罚与UCB方法的限制结合在一起,并在面对不确定的情况下结合了两种乐观方法。我们确定从理论上讲,此方法保留$ \ tilde {\ Mathcal {o}}}(\ sqrt {t})$遗憾,迄今为止最著名的。我们进一步比较了提议的增强RBMLE-UCB和标准RBMLE的经验性能与UCB,Thompson采样,输入扰动,随机确定性等值和在许多现实世界中的示例,包括Boeing 747和无人驾驶汽车的许多现实示例。我们进行了广泛的仿真研究,表明增强的RBMLE始终优于UCB,汤普森采样和稳定的距离,而差距远远优于输入扰动,并且比随机确定性等效性更好。

We consider the problem of controlling an unknown stochastic linear system with quadratic costs - called the adaptive LQ control problem. We re-examine an approach called ''Reward Biased Maximum Likelihood Estimate'' (RBMLE) that was proposed more than forty years ago, and which predates the ''Upper Confidence Bound'' (UCB) method as well as the definition of ''regret'' for bandit problems. It simply added a term favoring parameters with larger rewards to the criterion for parameter estimation. We show how the RBMLE and UCB methods can be reconciled, and thereby propose an Augmented RBMLE-UCB algorithm that combines the penalty of the RBMLE method with the constraints of the UCB method, uniting the two approaches to optimism in the face of uncertainty. We establish that theoretically, this method retains $\Tilde{\mathcal{O}}(\sqrt{T})$ regret, the best-known so far. We further compare the empirical performance of the proposed Augmented RBMLE-UCB and the standard RBMLE (without the augmentation) with UCB, Thompson Sampling, Input Perturbation, Randomized Certainty Equivalence and StabL on many real-world examples including flight control of Boeing 747 and Unmanned Aerial Vehicle. We perform extensive simulation studies showing that the Augmented RBMLE consistently outperforms UCB, Thompson Sampling and StabL by a huge margin, while it is marginally better than Input Perturbation and moderately better than Randomized Certainty Equivalence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源