论文标题
使用双纳米孔设备在DSDNA构建体上区分蛋白质标签
Discriminating protein tags on dsDNA constructs using a dual Nanopore device
论文作者
论文摘要
我们报告了一种新颖的仿真策略,使我们能够确定控制DSDNA构建体上结构蛋白标签的实验可测量特征的关键参数,该特征通过双纳米孔设置转移。首先,我们通过在48 kbp long dsDNA上重现和解释链霉亲和素标记的实验停留时间分布的物理来源来验证硅中的方案。这些研究揭示了与DSDNA片段的动力学相比,蛋白质标签特征的重要差异,立即提供了有关如何改善测量方案的线索,以准确破译未知的基因组长度。尤其重要的是,在计算机研究中,关于电场内外毛孔的影响,我们发现,这对于通过其有效的电荷和质量来区分蛋白质标签至关重要,这些电荷和质量是通过每个孔平均停留时间的一般幂律依赖性所揭示的。仿真协议可以以子纳米长度尺度监视单个单体的分段动力学,并使用非质量张力传播理论(一个关键元素)准确地解解基因组长度的关键元素,从一个标签到另一个标签提供了不同速度变化的解释。我们通过计算与实验密切一致的peclet数来进一步证明模型和所选的仿真参数。对CG模型的模拟结果的分析具有完善实验获得的基因组长度和精心选择的模拟策略的准确性,可以作为一种有力的工具,可以在DSDNA构造上以不同类型来区分不同类型的中性和充电标签,以其物理特征构建,并可以提高实验和实验的效率和精确度。
We report a novel simulation strategy that enables us to identify key parameters controlling the experimentally measurable characteristics of structural protein tags on dsDNA construct translocating through a double nanopore setup. First, we validate the scheme in silico by reproducing and explaining the physical origin of the experimental dwell time distributions of the Streptavidin markers on a 48 kbp long dsDNA. These studies reveal the important differences in the characteristics of the protein tags compared to the dynamics of dsDNA segments, immediately providing clues on how to improve the measurement protocols to decipher the unknown genomic lengths accurately. Of particular importance is the in silico studies on the effect of electric field inside and beyond the pores which we find is critical to discriminate protein tags based on their effective charges and masses revealed through a generic power-law dependence of the average dwell time at each pore. The simulation protocols enable to monitor piecewise dynamics of the individual monomers at a sub-nanometer length scale and provide an explanation of the disparate velocity variation from one tag to the other using the nonequilibrium tension propagation theory, - a key element to decipher genomic lengths accurately. We further justify the model and the chosen simulation parameters by calculating the Peclet number which is in close agreement with the experiment. Analysis of our simulation results from the CG model has the capability to refine the accuracy of the experimentally obtained genomic lengths and carefully chosen simulation strategies can serve as a powerful tool to discriminate different types of neutral and charged tags of different origins on a dsDNA construct in terms of their physical characteristics and can provide insights to increase both the efficiency and accuracy of an experimental dual-nanopore setup.