论文标题

发现新的通用党规则集

Discovering a new universal partizan ruleset

论文作者

Suetsugu, Koki

论文摘要

在组合游戏理论中,我们研究了游戏集的集合,其元素是根据规则集的位置绘制的。在许多情况下,给定规则集,并非G的所有元素都可以作为规则集中的位置。这是一个有趣的问题,哪种规则集将允许所有规则出现。在本文中,我们介绍了一个名为Turning Tiles的规则集,并证明该规则集是通用的Partizan规则集,也就是说,G中的每个元素都可以作为规则集中的位置出现。这是仅次于konane的第二个普遍党规则集。

In Combinatorial Game Theory, we study the set of games G, whose elements are mapped from positions of rulesets. In many case, given a ruleset, not all elements of G can be given as a position in the ruleset. It is an intriguing question what kind of ruleset would allow all of them to appear. In this paper, we introduce a ruleset named turning tiles and prove the ruleset is a universal partizan ruleset, that is, every element in G can occur as a position in the ruleset. This is the second universal partizan ruleset after generalized konane.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源