论文标题

在$ \ mathcal {n} = 4 $ sym&supergravity中以$ sl(2,\ mathbb {z})$ - 平均字符串,以$ \ mathcal {n} = 4 $ sym&supergravity中的利用s二元性 -

Harnessing S-Duality in $\mathcal{N}=4$ SYM & Supergravity as $SL(2,\mathbb{Z})$-Averaged Strings

论文作者

Collier, Scott, Perlmutter, Eric

论文摘要

我们开发了一种新方法来提取四维$ \ MATHCAL {n} = 4 $ SUPER YANG-MILLS(SYM)及其字符串理论双重性的S偶尔的物理后果,基于$ SL(2,\ Mathbb {Z})$ Spectral Theordion。我们观察到,CFT可观察到$ \ Mathcal {O} $,在$ sl(2,\ Mathbb {z})下不变,将复杂的量规耦合$τ$转换,承认独特的频谱分解为方形函数的基础。该公式对$ \ MATHCAL {n} = 4 $ sym Data的分析结构有直接影响,无论是扰动和非扰动而在所有参数中。例如,$ k $ - instanton部门由零和一个in-instanton部门唯一确定,而Borel impable则围绕$ K $ -Instantons的bore-sumper serivers具有与简单的$ k $依赖性的收敛radii。在很大的$ n $限制中,我们得出了非扰动效果的存在和缩放,我们为某些$ \ nathcal {n} = 4 $ SYM可观察到了这些效果。这些技术的优雅基准是由[arxiv:2102.09537]确定的集成四点函数,用于$ su(n)$ gauge group的所有$τ$;我们得出并阐明其形式。 这些结果对全息图产生了影响。我们解释了$ \ langle \ Mathcal {o} \ rangle $,$ \ Mathcal {n} = 4 $ supersymmetric suppersymmetric conformal歧管相对于Zamolodchikov测量的平均值是由频谱分解干净隔离的。我们证明,$ \ langle \ Mathcal {o} \ rangle $的大$ n $限制等于大$ n $,大't Hooft耦合极限为$ \ MATHCAL {O} $。从图上说,$ \ langle \ Mathcal {o} \ rangle = \ Mathcal {o} _ {\ rm sugra} $,其在ADS $ _5 \ times $ s $ s $ s $^5 $的IIB superGravity中的价值。该结果将其扩展到所有订单$ 1/n $,将合奏嵌入了传统的广告/CFT范式中。 $ sl(2,\ mathbb {z})$合奏的统计数据表现出扰动和非扰动$ 1/n $效果。

We develop a new approach to extracting the physical consequences of S-duality of four-dimensional $\mathcal{N}=4$ super Yang-Mills (SYM) and its string theory dual, based on $SL(2,\mathbb{Z})$ spectral theory. We observe that CFT observables $\mathcal{O}$, invariant under $SL(2,\mathbb{Z})$ transformations of a complexified gauge coupling $τ$, admit a unique spectral decomposition into a basis of square-integrable functions. This formulation has direct implications for the analytic structure of $\mathcal{N}=4$ SYM data, both perturbatively and non-perturbatively in all parameters. For example, $k$-instanton sectors are uniquely determined by the zero- and one-instanton sectors, and Borel summable series around $k$-instantons have convergence radii with simple $k$-dependence. In large $N$ limits, we derive the existence and scaling of non-perturbative effects, which we exhibit for certain $\mathcal{N}=4$ SYM observables. An elegant benchmark for these techniques is the integrated four-point function conjecturally determined by [arXiv:2102.09537] for all $τ$ for $SU(N)$ gauge group; we derive and elucidate its form. These results have ramifications for holography. We explain how $\langle\mathcal{O}\rangle$, the ensemble average over the $\mathcal{N}=4$ supersymmetric conformal manifold with respect to the Zamolodchikov measure, is cleanly isolated by the spectral decomposition. We prove that the large $N$ limit of $\langle\mathcal{O}\rangle$ equals the large $N$, large 't Hooft coupling limit of $\mathcal{O}$. Holographically speaking, $\langle\mathcal{O}\rangle = \mathcal{O}_{\rm sugra}$, its value in type IIB supergravity on AdS$_5 \times$ S$^5$. This result, which extends to all orders in $1/N$, embeds ensemble averaging into the traditional AdS/CFT paradigm. The statistics of the $SL(2,\mathbb{Z})$ ensemble exhibit both perturbative and non-perturbative $1/N$ effects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源