论文标题
遵守指导互联网传递的认知行为疗法的预测:一种最小的数据敏感方法
Adherence Forecasting for Guided Internet-Delivered Cognitive Behavioral Therapy: A Minimally Data-Sensitive Approach
论文作者
论文摘要
互联网传递的心理治疗(IDPT)被视为改善心理保健可及性的有效且可扩展的途径。在这种情况下,由于医疗保健专业人员与患者之间的相互作用减少,治疗依从性是应对解决的挑战。同时,围绕个人数据使用的法规的增加(例如,通用数据保护法规(GDPR))使数据最小化成为IDPTS现实实施的核心考虑因素。因此,这项工作提出了一种基于自我注意力的深度学习方法,以执行自动依从性预测,同时仅依靠最低敏感的登录/注销t-timestamp数据。在包含342名接受指导互联网赋予认知行为疗法(G-ICBT)治疗的患者的数据集上测试了这种方法。在这342名患者中,根据这项工作中使用的依从性定义,认为101名(〜30%)被认为是非贴遗迹(辍学)(即至少八个连接到平台,持续时间超过56天)。在56天(〜1/3)中仅20个治疗中仅20个平均平衡精度达到了70%以上的平均平衡精度。这项研究表明,仅使用最小敏感的数据可以实现对G-ICBT的自动遵守预测,从而促进了在现实世界IDPT平台中实施此类工具。
Internet-delivered psychological treatments (IDPT) are seen as an effective and scalable pathway to improving the accessibility of mental healthcare. Within this context, treatment adherence is an especially pertinent challenge to address due to the reduced interaction between healthcare professionals and patients. In parallel, the increase in regulations surrounding the use of personal data, such as the General Data Protection Regulation (GDPR), makes data minimization a core consideration for real-world implementation of IDPTs. Consequently, this work proposes a Self-Attention-based deep learning approach to perform automatic adherence forecasting, while only relying on minimally sensitive login/logout-timestamp data. This approach was tested on a dataset containing 342 patients undergoing Guided Internet-delivered Cognitive Behavioral Therapy (G-ICBT) treatment. Of these 342 patients, 101 (~30%) were considered non-adherent (dropout) based on the adherence definition used in this work (i.e. at least eight connections to the platform lasting more than a minute over 56 days). The proposed model achieved over 70% average balanced accuracy, after only 20 out of the 56 days (~1/3) of the treatment had elapsed. This study demonstrates that automatic adherence forecasting for G-ICBT, is achievable using only minimally sensitive data, thus facilitating the implementation of such tools within real-world IDPT platforms.