论文标题
3个manifolds和VOA字符
3-Manifolds and VOA Characters
论文作者
论文摘要
通过研究$ q $ series $ \ widehat z $ -Invariants的属性,我们在3个manifolds和顶点代数之间开发了词典。特别是,我们将本字典中先前已知的条目概括为具有较高等级的谎言组,具有三个具有摩托线边界的manifolds,以及具有线路运算符的BPS分区功能。这为对数顶点代数在3D-3D通信的框架中提供了新的物理实现,并为他们的未来研究开辟了新的途径。例如,我们说明了$ \ widehat {z} $的打结量信件如何导致许多新型Fermionic Formulas for VOA字符的无限家庭。
By studying the properties of $q$-series $\widehat Z$-invariants, we develop a dictionary between 3-manifolds and vertex algebras. In particular, we generalize previously known entries in this dictionary to Lie groups of higher rank, to 3-manifolds with toral boundaries, and to BPS partition functions with line operators. This provides a new physical realization of logarithmic vertex algebras in the framework of the 3d-3d correspondence and opens new avenues for their future study. For example, we illustrate how invoking a knot-quiver correspondence for $\widehat{Z}$-invariants leads to many infinite families of new fermionic formulae for VOA characters.