论文标题
固定位置过程中的固定最大化
Fixation Maximization in the Positional Moran Process
论文作者
论文摘要
Moran过程是一个经典的随机过程,该过程模拟了图表上的入侵动力学。一个单一的“突变”(例如,一种新的意见,压力,社会特质等)入侵了一群居民,分布在图表的节点上。突变健身优势$δ\ geq 0 $决定了如何积极地向邻居传播突变体。兴趣的数量是固定概率,即初始突变体最终接管整个人群的概率。但是,在现实的环境中,入侵突变体仅在某些位置才有优势。例如,允许乳糖代谢的细菌突变仅在存在乳制品的地方赋予优势。在本文中,我们介绍了位置moran过程,一种自然的概括,其中突变适应性优势仅在称为活性节点的特定节点上实现。关联的优化问题是固定最大化:给定预算$ K $,选择一组$ k $ Active节点,以最大化入侵突变体的固定概率。我们表明该问题是NP-HARD,而优化函数并不是suppodular,因此表明了强大的计算硬度。然后,我们专注于两个自然限制。在$δ\至\ infty $(强选择)的极限中,尽管问题仍然是np-hard,但优化函数会产生子模型,因此使用简单的贪婪算法接受了恒定的因子近似。在$δ\至0 $(弱选择)的限制中,我们表明,在$ O(m^ω)$时间中,我们可以获得一个紧密的近似值,其中$ m $是边缘数量,$ω$是矩阵 - multiplication odponent。最后,我们对新算法进行了实验评估,以及一些提出的启发式方法。
The Moran process is a classic stochastic process that models invasion dynamics on graphs. A single "mutant" (e.g., a new opinion, strain, social trait etc.) invades a population of residents spread over the nodes of a graph. The mutant fitness advantage $δ\geq 0$ determines how aggressively mutants propagate to their neighbors. The quantity of interest is the fixation probability, i.e., the probability that the initial mutant eventually takes over the whole population. However, in realistic settings, the invading mutant has an advantage only in certain locations. E.g., a bacterial mutation allowing for lactose metabolism only confers an advantage on places where dairy products are present. In this paper we introduce the positional Moran process, a natural generalization in which the mutant fitness advantage is only realized on specific nodes called active nodes. The associated optimization problem is fixation maximization: given a budget $k$, choose a set of $k$ active nodes that maximize the fixation probability of the invading mutant. We show that the problem is NP-hard, while the optimization function is not submodular, thus indicating strong computational hardness. Then we focus on two natural limits. In the limit of $δ\to\infty$ (strong selection), although the problem remains NP-hard, the optimization function becomes submodular and thus admits a constant-factor approximation using a simple greedy algorithm. In the limit of $δ\to 0$ (weak selection), we show that in $O(m^ω)$ time we can obtain a tight approximation, where $m$ is the number of edges and $ω$ is the matrix-multiplication exponent. Finally, we present an experimental evaluation of the new algorithms together with some proposed heuristics.