论文标题
深处:全球路径生成的深度学习航路点估计器
DeepWay: a Deep Learning Waypoint Estimator for Global Path Generation
论文作者
论文摘要
农业3.0和4.0逐渐将服务机器人技术和自动化引入了几个农业过程,主要提高了农作物的质量和季节性的产量。基于行的农作物是测试和部署能够监视和管理收获的智能机器的理想设置。在这种情况下,全球途径的生成对于地面还是航空车至关重要,这是每种任务计划的起点。然而,研究界目前对这个问题的关注很少,全球路径生成自动化仍然有待解决。为了为自主机器生成可行的途径,提出的研究提出了一个功能学习完全卷积模型,能够在给定占用网格图的情况下估算航路点。特别是,我们将提出的数据驱动方法应用于基于行的作物的特定情况,其总体目标是生成一条能够完全覆盖作物扩展的全球路径。通过定制的合成数据集和不同场景的真实卫星衍生的图像进行了广泛的实验证明了我们方法的有效性,并证明了端到端和完全自主的全球路径计划者的可行性。
Agriculture 3.0 and 4.0 have gradually introduced service robotics and automation into several agricultural processes, mostly improving crops quality and seasonal yield. Row-based crops are the perfect settings to test and deploy smart machines capable of monitoring and manage the harvest. In this context, global path generation is essential either for ground or aerial vehicles, and it is the starting point for every type of mission plan. Nevertheless, little attention has been currently given to this problem by the research community and global path generation automation is still far to be solved. In order to generate a viable path for an autonomous machine, the presented research proposes a feature learning fully convolutional model capable of estimating waypoints given an occupancy grid map. In particular, we apply the proposed data-driven methodology to the specific case of row-based crops with the general objective to generate a global path able to cover the extension of the crop completely. Extensive experimentation with a custom made synthetic dataset and real satellite-derived images of different scenarios have proved the effectiveness of our methodology and demonstrated the feasibility of an end-to-end and completely autonomous global path planner.