论文标题
Deep21:21厘米前景拆除的深度学习方法
deep21: a Deep Learning Method for 21cm Foreground Removal
论文作者
论文摘要
我们寻求从21cm强度映射观测值中去除前景污染物。我们证明,具有UNET结构和三维卷积的深卷积神经网络(CNN),经过模拟观测的训练,可以有效地将宇宙中性氢(HI)信号的频率和空间模式与噪声存在的前景分离。清洁的地图在所有相关的角度尺度和频率下恢复了10%以内的宇宙聚集统计。这相当于在小角度($ \ ell> 300 $)上的预测方差超出数量级,并且与标准主要组件分析(PCA)相比,小径向尺度($ k _ {\ rm h \ mpc^{ - 1})$提高了准确性($ k _ {\ \ \ \ \ \ \ \ \ \ \ \ \ rm h \ mpc^{ - 1})$。我们通过训练UNET的集合来估算网络预测的后置信区间。我们的方法证明了分析21厘米强度图的可行性,而不是衍生的摘要统计数据,对于即将进行的无线电实验,只要模拟的前景模型足够现实。我们在GitHub https://github.com/tlmakinen/deep21上提供了用于此分析的代码,以及通过随附的http://bit.lit.lit.ly/deep21-colab colab colab笔记本的基于浏览器的实验和UNET模型的教程。
We seek to remove foreground contaminants from 21cm intensity mapping observations. We demonstrate that a deep convolutional neural network (CNN) with a UNet architecture and three-dimensional convolutions, trained on simulated observations, can effectively separate frequency and spatial patterns of the cosmic neutral hydrogen (HI) signal from foregrounds in the presence of noise. Cleaned maps recover cosmological clustering statistics within 10% at all relevant angular scales and frequencies. This amounts to a reduction in prediction variance of over an order of magnitude on small angular scales ($\ell > 300$), and improved accuracy for small radial scales ($k_{\parallel} > 0.17\ \rm h\ Mpc^{-1})$ compared to standard Principal Component Analysis (PCA) methods. We estimate posterior confidence intervals for the network's prediction by training an ensemble of UNets. Our approach demonstrates the feasibility of analyzing 21cm intensity maps, as opposed to derived summary statistics, for upcoming radio experiments, as long as the simulated foreground model is sufficiently realistic. We provide the code used for this analysis on Github https://github.com/tlmakinen/deep21 as well as a browser-based tutorial for the experiment and UNet model via the accompanying http://bit.ly/deep21-colab Colab notebook.