论文标题
有效估计与无限分布分布相关的一些振荡积分
Effective estimation of some oscillatory integrals related to infinitely divisible distributions
论文作者
论文摘要
我们提出了一个实用框架,以一种简单的方式证明了傅里叶积分的两键均不散发扩展$$ {\ mathcal i}(t)= \ int _ {\ mathbb r}({\ rm e} $ \ mathbb {r} $和$ ϕ $是可测量的。这适用于许多基本情况,与Levy的连续性定理有关。我们提出了限制与理性持续分数系数有关的法律的应用。
We present a practical framework to prove, in a simple way, two-terms asymptotic expansions for Fourier integrals $$ {\mathcal I}(t) = \int_{\mathbb R}({\rm e}^{itϕ(x)}-1) {\rm d} μ(x) $$ where $μ$ is a probability measure on $\mathbb{R}$ and $ϕ$ is measurable. This applies to many basic cases, in link with Levy's continuity theorem. We present applications to limit laws related to rational continued fractions coefficients.