论文标题

在$ bt_1 $ $ group计划和fermat jacobians上

On $BT_1$ group schemes and Fermat Jacobians

论文作者

Pries, Rachel, Ulmer, Douglas

论文摘要

让$ p $为质量数字,让$ k $是特征$ p $的代数封闭场。 $ k $上的$ bt_1 $组方案是有限的交换组计划,在$ p $ divisible(barsotti-tate)组上作为$ p $的内核产生。我们比较了$ BT_1 $组方案的三个分类,这在很大程度上是由于Kraft,Ekedahl和Oort的,并使用单词,规范过滤和排列进行了定义。使用此比较,我们确定了Fermat商曲线的Ekedahl- ekedahl类型,并计算了这些曲线的$ p $ torsion组方案的四个不变性。

Let $p$ be a prime number and let $k$ be an algebraically closed field of characteristic $p$. A $BT_1$ group scheme over $k$ is a finite commutative group scheme which arises as the kernel of $p$ on a $p$-divisible (Barsotti--Tate) group. We compare three classifications of $BT_1$ group schemes, due in large part to Kraft, Ekedahl, and Oort, and defined using words, canonical filtrations, and permutations. Using this comparison, we determine the Ekedahl--Oort types of Fermat quotient curves and we compute four invariants of the $p$-torsion group schemes of these curves.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源