论文标题
带有圆盘的恒星二进制型旋转轨道未对准的激发:应用于Di Herculis
Excitation of Spin-Orbit Misalignments in Stellar Binaries with Circumbinary Disks: Application to DI Herculis
论文作者
论文摘要
Di Herculis恒星二进制系统中的大型自旋轨道未对准已经解决了异常缓慢的Apsidal进液率的数十年难题,但提出了有关倾斜起源的新问题。本文调查了恒星二进制中的倾斜演变,该二进制构成了适度的环形磁盘。随着磁盘和二进制轴经历相互进动,每个恒星都会从其伴侣恒星中经历扭矩,因此旋转和轨道轴经历相互动力。随着磁盘通过风与积聚的结合失去质量,可以将系统捕获到高蛋白的Cassini状态(一种自旋轨道共振)中。最终的倾斜取决于磁盘分散的细节。我们构建了一个简单的磁盘模型,以模拟由于粘性积聚和光蒸发而导致的磁盘扩散,并确定用于产生Di Herculis中观察到的斜率的必要磁盘特性。磁盘必须大(至少$ 10 \%的二进制质量)。如果抑制了二进制的积聚,则观察到的高恒星斜率将以$ \ sim 5^\ circ -10^\ circ $的二进制二轴倾斜度复制,但是如果发生实质性积聚,则必须更大,$ \ sim 20^\ circ -circ -circ -circ -30^\ circ $。如果发生中等积聚,最初,磁盘必须慢慢失去质量,但最终突然失去了其剩余的质量,类似于观察到的T型托盘周围磁盘的两次计算行为。随着斜率的发展,二进制轨道上的自旋反馈会导致二进制倾斜度衰减,这是标准的Cassini状态处理中所缺乏的特征。
The large spin-orbit misalignments in the DI Herculis stellar binary system have resolved the decades-long puzzle of the anomalously slow apsidal precession rate, but raise new questions regarding the origin of the obliquities. This paper investigates obliquity evolution in stellar binaries hosting modestly-inclined circumbinary disks. As the disk and binary axes undergo mutual precession, each oblate star experiences a torque from its companion star, so that the spin and orbital axes undergo mutual precession. As the disk loses mass through a combination of winds and accretion, the system may be captured into a high-obliquity Cassini state (a spin-orbit resonance). The final obliquity depends on the details of the disk dispersal. We construct a simple disk model to emulate disk dispersal due to viscous accretion and photoevaporation, and identify the necessary disk properties for producing the observed obliquities in DI Herculis. The disk must be massive (at least $10 \%$ of the binary mass). If accretion onto the binary is suppressed, the observed high stellar obliquities are reproduced with a binary-disk inclination of $\sim 5^\circ - 10^\circ$, but if substantial accretion occurs, the inclination must be larger, $\sim 20^\circ - 30^\circ$. If moderate accretion occurs, initially the disk must lose its mass slowly, but eventually lose its remaining mass abruptly, analogous to the observed two-timescale behavior for disks around T-Tauri stars. The spin feedback on the binary orbit causes the binary-disk inclination to decay as the obliquity evolves, a feature that is absent from the standard Cassini state treatment.