论文标题

通过倾斜驱动的潮汐逃亡的超短距离行星的形成

Formation of Ultra-Short-Period Planets by Obliquity-Driven Tidal Runaway

论文作者

Millholland, Sarah, Spalding, Christopher

论文摘要

已经发现小岩石行星在极端的宿主明星处于极端的距离,有时只有$ \ sim 2 $恒星半径。这些超短期的行星(USP)可能在当今的轨道中没有形成,而是从较大的初始分离中迁移。尽管潮汐是这种迁移的可能原因,但潮汐源仍然不确定。在这里,我们介绍了行星倾斜的潮汐,作为在封闭式多行星系统中生产USP的自然途径。至关重要的想法是,潮汐耗散通常会迫使行星旋向矢量变为称为“卡西尼态”的平衡构型,其中行星倾斜(轴向倾斜)是非零的。在这些情况下,不可避免的是持续的潮汐消散和内向轨道迁移。然后,迁移会增加倾斜度并加强潮汐,从而产生积极的反馈回路。因此,如果行星的初始半肌轴足够小($ a \ lyssim 0.05 $ au),它会经历失控的轨道衰减,当强制倾斜的尺寸达到非常高的值时,它会停滞在超短缺的轨道时期($ \ sim 85^{\ civer} $),并且变得不稳定。我们使用世俗动力学来概述参数空间,在该空间中,原型开普勒多行星系统的最内向成员可以成为USP。我们发现,这些条件与USP的许多观察到的特征一致,例如周期比,相互倾向和出现速率趋势的恒星类型。未来对恒星倾斜和亲密伴侣的检测,以及对混乱倾斜动力学潜力的理论探索,可以帮助限制这种机制的普遍性。

Small, rocky planets have been found orbiting in extreme proximity to their host stars, sometimes down to only $\sim 2$ stellar radii. These ultra-short-period planets (USPs) likely did not form in their present-day orbits, but rather migrated from larger initial separations. While tides are the probable cause of this migration, the tidal source has remained uncertain. Here we introduce planetary obliquity tides as a natural pathway for the production of USPs within close-in multi-planet systems. The crucial idea is that tidal dissipation generally forces planetary spin vectors to equilibrium configurations called "Cassini states", in which the planetary obliquities (axial tilts) are non-zero. In these cases, sustained tidal dissipation and inward orbital migration are inevitable. Migration then increases the obliquity and strengthens the tides, creating a positive feedback loop. Thus, if a planet's initial semi-major axis is small enough ($a \lesssim 0.05$ AU), it can experience runaway orbital decay, which is stalled at ultra-short orbital periods when the forced obliquity reaches very high values ($\sim 85^{\circ}$) and becomes unstable. We use secular dynamics to outline the parameter space in which the innermost member of a prototypical Kepler multiple-planet system can become a USP. We find that these conditions are consistent with many observed features of USPs, such as period ratios, mutual inclinations, and occurrence rate trends with stellar type. Future detections of stellar obliquities and close-in companions, together with theoretical explorations of the potential for chaotic obliquity dynamics, can help constrain the prevalence of this mechanism.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源