论文标题

Hodge-Neumann Heat内核的构建,本地伯恩斯坦估计以及Onsager在流体动力学中的猜想

Construction of the Hodge-Neumann heat kernel, local Bernstein estimates, and Onsager's conjecture in fluid dynamics

论文作者

Huynh, Khang Manh

论文摘要

最近,在Arxiv:1907.05360 [Math.ap]中,我们介绍了可加热电流的理论,并证明了Sagager对带边界的Riemannian歧管的猜想,其中弱解决方案具有$ b_ {3,1}^{\ frac {\ frac {1}} {3} {3} {3}}} $ Spatial jullistial $ Spatial patial patial patial patial。在此续集中,通过应用几何微局部分析的技术来构建Hodge-Neumann Heat内核,我们获得了异位衰减和伯恩斯坦当地的估计,然后使用它们将结果扩展到Besov space $ \ wideHat {B} $ \ wideHat {b} _ {3,c(\ sathbb {n})}}^{1/3} $来自arxiv:1310.7947 [nath.ap]和空间$ \ space $ \ useverline {b} _ {b} _ {3,{3,\ text {vmo}}}}}^{1/3} $1/10-19020020。已知的功能空间,其中Onsager的猜想在平坦的背景上保持。

Most recently, in arXiv:1907.05360 [math.AP], we introduced the theory of heatable currents and proved Onsager's conjecture on Riemannian manifolds with boundary, where the weak solution has $B_{3,1}^{\frac{1}{3}}$ spatial regularity. In this sequel, by applying techniques from geometric microlocal analysis to construct the Hodge-Neumann heat kernel, we obtain off-diagonal decay and local Bernstein estimates, and then use them to extend the result to the Besov space $\widehat{B}_{3,V}^{\frac{1}{3}}$, which generalizes both the space $\widehat{B}_{3,c(\mathbb{N})}^{1/3}$ from arXiv:1310.7947 [math.AP] and the space $\underline{B}_{3,\text{VMO}}^{1/3}$ from arXiv:1902.07120 [math.AP] -- the best known function space where Onsager's conjecture holds on flat backgrounds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源