论文标题

一套迪里奇莱特的不可分解数字的豪斯多夫度量

The generalised Hausdorff measure of sets of Dirichlet non-improvable numbers

论文作者

Bos, Philip, Hussain, Mumtaz, Simmons, David

论文摘要

令$ψ:\ mathbb r _+\ to \ mathbb r _+$是一个非进口功能。如果系统$$ | qx-p | <\,ψ(t)\ \ {\ text {and}} \ | q | <t $ | q | <t $ 4具有非整数整数解决方案,则据说$ x $可以改善$ψ$ -Dirichlet可以改善。表示此类点的收集$ d(ψ)$。在本文中,我们证明了在自然非限制性条件下对所有维度函数有效的零侵入法。某些后果是零界定律,对于所有基本的亚线性维度函数,Hussain-Kleinbock-Wadleigh-wang(2018)证明了某些非必要的亚线性尺寸函数,并且对于所有维度函数,但在近似函数上具有生长条件。

Let $ψ:\mathbb R_+\to\mathbb R_+$ be a non-increasing function. A real number $x$ is said to be $ψ$-Dirichlet improvable if the system $$|qx-p|< \, ψ(t) \ \ {\text{and}} \ \ |q|<t$$ has a non-trivial integer solution for all large enough $t$. Denote the collection of such points by $D(ψ)$. In this paper, we prove a zero-infinity law valid for all dimension functions under natural non-restrictive conditions. Some of the consequences are zero-infinity laws, for all essentially sub-linear dimension functions proved by Hussain-Kleinbock-Wadleigh-Wang (2018), for some non-essentially sub-linear dimension functions, and for all dimension functions but with a growth condition on the approximating function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源