论文标题

Disene:解开知识图嵌入

DisenE: Disentangling Knowledge Graph Embeddings

论文作者

Kou, Xiaoyu, Lin, Yankai, Li, Yuntao, Xu, Jiahao, Li, Peng, Zhou, Jie, Zhang, Yan

论文摘要

知识图嵌入(KGE)旨在将实体和关系嵌入到低维矢量中,最近引起了广泛的关注。但是,现有的研究主要基于黑盒神经模型,这使得很难解释学习的表示形式。在本文中,我们介绍了Disene,这是一个端到端的框架,以学习脱离知识图的嵌入。特别是,我们引入了一种基于注意力的机制,该机制使该模型能够根据给定的关系明确关注实体嵌入的相关组成部分。此外,我们介绍了两个新颖的正规化器,以鼓励实体表示的每个组成部分独立反映孤立的语义方面。实验结果表明,我们提出的disene研究了一种解决KGE解释性的观点,被证明是提高链接预测任务的性能的有效方法。

Knowledge graph embedding (KGE), aiming to embed entities and relations into low-dimensional vectors, has attracted wide attention recently. However, the existing research is mainly based on the black-box neural models, which makes it difficult to interpret the learned representation. In this paper, we introduce DisenE, an end-to-end framework to learn disentangled knowledge graph embeddings. Specially, we introduce an attention-based mechanism that enables the model to explicitly focus on relevant components of entity embeddings according to a given relation. Furthermore, we introduce two novel regularizers to encourage each component of the entity representation to independently reflect an isolated semantic aspect. Experimental results demonstrate that our proposed DisenE investigates a perspective to address the interpretability of KGE and is proved to be an effective way to improve the performance of link prediction tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源