论文标题

振荡性的手性流动在受障碍物的限制活性流体中

Oscillatory chiral flows in confined active fluids with obstacles

论文作者

Zhang, Bo, Hilton, Benjamin, Short, Christopher, Souslov, Anton, Snezhko, Alexey

论文摘要

由自露的旋转颗粒组成的活性胶体流体在微观上注入能量和角动量表明了自发的集体状态,这些状态从羊群到连贯的涡流。尽管它们看起来很简单,但这些流体的远距离平衡行为的出现仍然很遥远,对下一代活性材料的设计和控制构成了挑战。当限制在环中时,一旦自发流选择方向,这种所谓的极性活性流体就会获得手性。在一个完美的戒指中,这种手性是无限期的长寿。在这里,我们结合了关于连续碳纤维TU方程的自行胶体胶辊和介观模拟的实验,以探讨如何通过障碍物控制和操纵这种手性状态。对于不同的障碍物几何形状,已经实现了三个动态稳态:长寿的手性流动,一种可极性状态,其中流量分解为反向旋转涡流,并且非常规的集体状态,流动具有振荡的手性。手性逆转是通过在障碍物附近形成间歇性涡流链的形成。我们证明,具有振荡性手性的集体状态的频率可以通过障碍参数来调节。我们改变障碍物形状,以设计独立于初始条件的手性状态。在我们的发现的基础上,我们意识到了一个具有两个三角形障碍物的系统,该系统迫使活动流体朝着整个环上有活性颗粒密度不平衡的状态。我们的结果表明,如何将自发极性活性流与尺寸和散射器的几何形状结合在一起,用于控制材料设计的极性活性液体的动态模式。

An active colloidal fluid comprised of self-propelled spinning particles injecting energy and angular momentum at the microscale demonstrates spontaneous collective states that range from flocks to coherent vortices. Despite their seeming simplicity, the emergent far-from-equilibrium behavior of these fluids remains poorly understood, presenting a challenge to the design and control of next-generation active materials. When confined in a ring, such so-called polar active fluids acquire chirality once the spontaneous flow chooses a direction. In a perfect ring, this chirality is indefinitely long-lived. Here, we combine experiments on self-propelled colloidal Quincke rollers and mesoscopic simulations of continuum Toner-Tu equations to explore how such chiral states can be controlled and manipulated by obstacles. For different obstacle geometries three dynamic steady states have been realized: long-lived chiral flow, an apolar state in which the flow breaks up into counter-rotating vortices and an unconventional collective state with flow having an oscillating chirality. The chirality reversal proceeds through the formation of intermittent vortex chains in the vicinity of an obstacle. We demonstrate that the frequency of collective states with oscillating chirality can be tuned by obstacle parameters. We vary obstacle shapes to design chiral states that are independent of initial conditions. Building on our findings, we realize a system with two triangular obstacles that force the active fluid towards a state with a density imbalance of active particles across the ring. Our results demonstrate how spontaneous polar active flows in combination with size and geometry of scatterers can be used to control dynamic patterns of polar active liquids for materials design.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源