论文标题

与远处监督的神经关系分类的元学习

Meta-Learning for Neural Relation Classification with Distant Supervision

论文作者

Li, Zhenzhen, Nie, Jian-Yun, Wang, Benyou, Du, Pan, Zhang, Yuhan, Zou, Lixin, Li, Dongsheng

论文摘要

遥远的监督提供了一种以低成本进行关系分类创建大量弱标记数据的方法。但是,由此产生的标记实例非常嘈杂,包含带有错误标签的数据。已经提出了许多方法来选择一个可靠的实例进行神经模型训练,但它们仍然遭受嘈杂的标记问题或弱标记数据的利用不足。为了更好地选择更多可靠的培训实例,我们引入了少量手动标记的数据,以引用指导选择过程。在本文中,我们提出了一种基于元学习的方法,该方法学会在参考数据的指导下重新召集嘈杂的培训数据。由于干净的参考数据通常很小,因此我们建议通过动态地将最可靠的精英实例从嘈杂的数据中提取来增强其。几个数据集的实验表明,参考数据可以有效地指导培训数据的选择,而我们的增强方法始终提高与现有最新方法相比的关系分类的性能。

Distant supervision provides a means to create a large number of weakly labeled data at low cost for relation classification. However, the resulting labeled instances are very noisy, containing data with wrong labels. Many approaches have been proposed to select a subset of reliable instances for neural model training, but they still suffer from noisy labeling problem or underutilization of the weakly-labeled data. To better select more reliable training instances, we introduce a small amount of manually labeled data as reference to guide the selection process. In this paper, we propose a meta-learning based approach, which learns to reweight noisy training data under the guidance of reference data. As the clean reference data is usually very small, we propose to augment it by dynamically distilling the most reliable elite instances from the noisy data. Experiments on several datasets demonstrate that the reference data can effectively guide the selection of training data, and our augmented approach consistently improves the performance of relation classification comparing to the existing state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源