论文标题
旋转胰岛素
Spin Insulatronics
论文作者
论文摘要
旋转绝缘剂涵盖了生成,检测,控制和利用磁绝缘体内部的高保真纯自旋电流和激发的努力。最终,新发现可能为纯旋转信息和通信技术打开大门。目的是用动态实体替换移动电荷,这些实体利用抗铁磁和铁磁绝缘子中使用低衰减相干和不连贯的旋转激发。雄心勃勃的是,新的基于纯自旋的系统将遭受减少的能量损失,并以高频运行。在磁绝缘子中,没有移动电荷载体可以消散能量。通过接口交换相互作用和自旋轨道耦合可以与常规电子设备集成。通过这种方式,金属中的自由电子夫妇可以在磁绝缘子中的局部旋转。反过来,这些链接有助于跨金属界面界面上的自旋转移扭矩和自旋轨道扭矩以及自旋泵送和电荷泵送的相关现象。界面耦合还将金属内部的电子运动与磁绝缘体内的自旋波动连接起来。这些功能表明,该系统可以实现由电子泥浆相互作用产生的空前控制相关性的控制。我们回顾了最新的发展,以实现绝缘体中纯自旋信息的发电,操纵,检测和控制。
Spin insulatronics covers efforts to generate, detect, control, and utilize high-fidelity pure spin currents and excitations inside magnetic insulators. Ultimately, the new findings may open doors for pure spin-based information and communication technologies. The aim is to replace moving charges with dynamical entities that utilize low-dissipation coherent and incoherent spin excitations in antiferromagnetic and ferromagnetic insulators. The ambition is that the new pure spin-based system will suffer reduced energy losses and operate at high frequencies. In magnetic insulators, there are no mobile charge carriers that can dissipate energy. Integration with conventional electronics is possible via interface exchange interactions and spin-orbit couplings. In this way, the free electrons in the metals couple to the localized spins in the magnetic insulators. In turn, these links facilitate spin-transfer torques and spin-orbit torques across metal-insulator interfaces and the associated phenomena of spin-pumping and charge-pumping. The interface couplings also connect the electron motion inside the metals with the spin fluctuations inside the magnetic insulators. These features imply that the system can enable unprecedented control of correlations resulting from the electron-magnon interactions. We review recent developments to realize electric and thermal generation, manipulation, detection, and control of pure spin information in insulators.