论文标题
偏光光子的Wigner函数和量子动力学理论
Wigner functions and quantum kinetic theory of polarized photons
论文作者
论文摘要
我们在库仑仪表仪中得出了极化光子的Wigner函数,并使用应用于量子场理论的$ \ hbar $膨胀,并确定无质量光子的侧跳效应。我们还讨论了Chern-simons电流和Zilch涡流效应的光子手性涡旋效应,以局部热平衡中的Zilch电流作为我们形式主义的一致性检查。发现结果与从不同方法获得的结果一致。此外,使用实时形式主义,我们为偏振光子构建了量子动力学理论(QKT)。通过进一步为分配功能采用特定的电源计数方案,我们提供了有效QKT的更简洁的形式。该光子QKT涉及与碰撞项中自动能量梯度相关的量子校正,这与无质量费米子手性动力学理论中的自旋轨道相互作用相关的侧跳校正类似。在没有背景颜色场的情况下,相同的理论框架也可以直接应用于弱耦合的纤维。
We derive the Wigner functions of polarized photons in the Coulomb gauge with the $\hbar$ expansion applied to quantum field theory, and identify side-jump effects for massless photons. We also discuss the photonic chiral vortical effect for the Chern-Simons current and zilch vortical effect for the zilch current in local thermal equilibrium as a consistency check for our formalism. The results are found to be in agreement with those obtained from different approaches. Moreover, using the real-time formalism, we construct the quantum kinetic theory (QKT) for polarized photons. By further adopting a specific power counting scheme for the distribution functions, we provide a more succinct form of an effective QKT. This photonic QKT involves quantum corrections associated with self-energy gradients in the collision term, which are analogous to the side-jump corrections pertinent to spin-orbit interactions in the chiral kinetic theory for massless fermions. The same theoretical framework can also be directly applied to weakly coupled gluons in the absence of background color fields.