论文标题
使用计划进行政策搜索,改善对连续域中深入增强学习的探索
Improving the Exploration of Deep Reinforcement Learning in Continuous Domains using Planning for Policy Search
论文作者
论文摘要
大多数深入的强化学习(D-RL)方法可以进行本地政策搜索,这增加了被困在当地最低限度的风险。此外,即使在基于仿真的训练中,模拟模型的可用性也没有完全利用,这可能会降低效率。为了更好地利用策略搜索中的模拟模型,我们建议在探索策略中将运动动力学计划者整合在一起,并以离线环境相互作用的离线方式学习控制政策。我们称基于模型的强化学习方法PPS(策略搜索计划)。我们将PPS与典型的RL设置(包括不足的系统)中的最新D-RL方法进行比较。比较表明,在动力学计划者的指导下,PPS从状态空间的更广泛区域收集数据。这会生成培训数据,可帮助PPS发现更好的政策。
Local policy search is performed by most Deep Reinforcement Learning (D-RL) methods, which increases the risk of getting trapped in a local minimum. Furthermore, the availability of a simulation model is not fully exploited in D-RL even in simulation-based training, which potentially decreases efficiency. To better exploit simulation models in policy search, we propose to integrate a kinodynamic planner in the exploration strategy and to learn a control policy in an offline fashion from the generated environment interactions. We call the resulting model-based reinforcement learning method PPS (Planning for Policy Search). We compare PPS with state-of-the-art D-RL methods in typical RL settings including underactuated systems. The comparison shows that PPS, guided by the kinodynamic planner, collects data from a wider region of the state space. This generates training data that helps PPS discover better policies.