论文标题
通过人工神经网络辅助的索引调制的中继OFDM的电源分配
Power Allocation for Relayed OFDM with Index Modulation Assisted by Artificial Neural Network
论文作者
论文摘要
在这封信中,我们提出了一种使用索引调制(OFDM-IM)系统的传递正交频分多路复用的功率分配方案。拟议的权力分配方案在人工神经网络(ANN)上回答,并深入学习,以分配源和继电器节点的各个子载波之间的传播。功率分配方案的目的是最大程度地减少一组约束下的总体传输功率。在不失去一般性的情况下,我们假设源和继电器节点处的所有子载波都具有不同的统计分布参数。继电器节点采用固定增益放大和前向(FG AF)继电器协议。我们采用自适应力矩估计方法(ADAM)来实施后传播学习并模拟提出的权力分配方案。分析和仿真结果表明,所提出的功率分配方案能够提供可比的性能作为最佳解决方案,但复杂性较低。
In this letter, we propose a power allocation scheme for relayed orthogonal frequency division multiplexing with index modulation (OFDM-IM) systems. The proposed power allocation scheme replies on artificial neural network (ANN) and deep learning to allocate transmit power among various subcarriers at the source and relay nodes. The objective of the power allocation scheme is to minimize the overall transmit power under a set of constraints. Without loss of generality, we assume all subcarriers at source and relay nodes are independently distributed with different statistical distribution parameters. The relay node adopts the fixed-gain amplify-and-forward (FG AF) relaying protocol. We employ the adaptive moment estimation method (Adam) to implement back-propagation learning and simulate the proposed power allocation scheme. The analytical and simulation results show that the proposed power allocation scheme is able to provide comparable performance as the optimal solution but with lower complexity.