论文标题

无限图的基本组的完整群体完成

The profinite completion of the fundamental group of infinite graphs of groups

论文作者

Aguiar, Mattheus, Zalesski, Pavel

论文摘要

令$(\ Mathcal {G},γ)$为有限组的抽象图。如果$γ$是有限的,我们可以以自然方式构建组的图表$(\ hat {\ nathcal {g}},γ)$,其中$ \ hat {\ hat {\ nathcal {g}}}(m)$是$ \ mathcal {g}(g}(g}(m)$ for All $ m m m m \ us,这样做的主要原因是$γ$是有限的,因此它已经是有限的。在本文中,我们通过构造一个profinite图$ \Overlineγ$来处理无限案例,其中$γ$密集地嵌入了$γ$,然后定义了$(\ wideHat {\ Mathcal {g}}}的offinite图,\overlineγ)$。我们还证明,基本组$π_1(\ wideHat {\ Mathcal {g}}},\Overlineγ)$是$π_1^{abs}(\ Mathcal {g},γ)$的profinite完成。这本书的《 pifinite图和群体》(Luis Ribes)于2017年出版的书6.7.1的答案是6.7.1。后来,我们概括了路易斯·里伯斯(Luis Ribes)和第二作者的论文主要定理$ \ OVERLINE {n_ {r}(h)} = n _ {\ hat {r}}}(\ oferline {h})$回答《肋骨书》的打开问题15.11.10。最后,我们概括了希拉·查加斯(Sheila Chagas)和第二作者的论文的主要定理,这表明每个实际上免费的群体都是亚组结合在一起的。这是同一本肋骨书的打开问题15.11.11。

Let $(\mathcal{G},Γ)$ be an abstract graph of finite groups. If $Γ$ is finite, we can construct a profinite graph of groups in a natural way $(\hat{\mathcal{G}},Γ)$, where $\hat{\mathcal{G}}(m)$ is the profinite completion of $\mathcal{G}(m)$ for all $m \in Γ$. The main reason for this is that $Γ$ is finite, so it is already profinite. In this paper we deal with the infinite case, by constructing a profinite graph $\overlineΓ$ where $Γ$ is densely embedded and then defining a profinite graph of groups $(\widehat{\mathcal{G}},\overlineΓ)$. We also prove that the fundamental group $Π_1(\widehat{\mathcal{G}},\overlineΓ)$ is the profinite completion of $Π_1^{abs}(\mathcal{G},Γ)$. This answers Open Question 6.7.1 of the book Profinite Graphs and Groups, published by Luis Ribes in 2017. Later we generalise the main theorem of a paper by Luis Ribes and the second author, proving that if $R$ is a virtually free abstract group and $H$ is a finitely generated subgroup of $R$, then $\overline{N_{R}(H)}=N_{\hat{R}}(\overline{H})$ answering Open Question 15.11.10 of the book of Ribes. Finally, we generalise the main theorem of a paper by Sheila Chagas and the second author, showing that every virtually free group is subgroup conjugacy separable. This answers Open Question 15.11.11 of the same book of Ribes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源