论文标题

距离距离的空间近似情况

The Case for Distance-Bounded Spatial Approximations

论文作者

Zacharatou, Eleni Tzirita, Kipf, Andreas, Sabek, Ibrahim, Pandey, Varun, Doraiswamy, Harish, Markl, Volker

论文摘要

传统上,空间近似是在空间数据库中使用的,以加速复杂的几何操作的处理。但是,通常仅在第一个过滤步骤中使用近似值来确定一组可能满足查询条件的候选空间对象。为了提供准确的结果,针对查询条件测试了候选对象的确切几何形状,这通常是昂贵的操作。然而,许多新兴应用程序(例如,可视化工具)需要交互式响应,而只需要近似结果。此外,现实世界中的地理空间数据本质上是不精确的,这使得确切的数据处理不必要。鉴于与空间数据相关的不确定性以及许多应用程序的放松精度要求,本视觉论文提倡对近似空间数据处理技术省略精确的几何测试,并仅根据(细粒度)近似值提供最终答案。得益于最近的硬件进步,今天可以实现这一愿景。此外,我们的近似技术采用了基于距离的误差绑定,即绑定在错误(或丢失)之间的最大空间距离和确切的结果,这对于有意义的分析至关重要。这种界限允许控制性能的近似和贸易准确性的精度。

Spatial approximations have been traditionally used in spatial databases to accelerate the processing of complex geometric operations. However, approximations are typically only used in a first filtering step to determine a set of candidate spatial objects that may fulfill the query condition. To provide accurate results, the exact geometries of the candidate objects are tested against the query condition, which is typically an expensive operation. Nevertheless, many emerging applications (e.g., visualization tools) require interactive responses, while only needing approximate results. Besides, real-world geospatial data is inherently imprecise, which makes exact data processing unnecessary. Given the uncertainty associated with spatial data and the relaxed precision requirements of many applications, this vision paper advocates for approximate spatial data processing techniques that omit exact geometric tests and provide final answers solely on the basis of (fine-grained) approximations. Thanks to recent hardware advances, this vision can be realized today. Furthermore, our approximate techniques employ a distance-based error bound, i.e., a bound on the maximum spatial distance between false (or missing) and exact results which is crucial for meaningful analyses. This bound allows to control the precision of the approximation and trade accuracy for performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源