论文标题
通过模型增强的强化学习来优化出租车舰队的随机路由
Optimising Stochastic Routing for Taxi Fleets with Model Enhanced Reinforcement Learning
论文作者
论文摘要
出行式服务(MAAS)的未来应采用乘车,街头车辆和乘车共享的集成系统,并通过优化的智能车辆路由,以响应实时的随机需求模式。鉴于中小型道路网络的随机需求模式,我们旨在优化大型车辆车队的路由政策。已经提出了一种基于模型的调度算法,一种基于高性能模型的基础算法和一种新型的混合算法,结合了自上而下方法的好处和无模型的强化学习,以路由\ emph {空置}车辆。我们使用近端策略优化并结合了内在奖励和外部奖励,设计基于强化学习的路由算法,以在探索和开发之间取得平衡。使用基于大规模的代理的显微模拟平台来评估我们提出的算法,我们的无模型增强学习和混合算法在人工道路网络和基于社区的新加坡公路网络上都具有出色的性能,并且我们的混合算法可以显着地认识到模型的学习者学习过程中的模型学习者。
The future of mobility-as-a-Service (Maas)should embrace an integrated system of ride-hailing, street-hailing and ride-sharing with optimised intelligent vehicle routing in response to a real-time, stochastic demand pattern. We aim to optimise routing policies for a large fleet of vehicles for street-hailing services, given a stochastic demand pattern in small to medium-sized road networks. A model-based dispatch algorithm, a high performance model-free reinforcement learning based algorithm and a novel hybrid algorithm combining the benefits of both the top-down approach and the model-free reinforcement learning have been proposed to route the \emph{vacant} vehicles. We design our reinforcement learning based routing algorithm using proximal policy optimisation and combined intrinsic and extrinsic rewards to strike a balance between exploration and exploitation. Using a large-scale agent-based microscopic simulation platform to evaluate our proposed algorithms, our model-free reinforcement learning and hybrid algorithm show excellent performance on both artificial road network and community-based Singapore road network with empirical demands, and our hybrid algorithm can significantly accelerate the model-free learner in the process of learning.