论文标题
兰德斯指标的边界刚度
Boundary rigidity for Randers metrics
论文作者
论文摘要
如果不可逆转的鳍规范是可逆的Finsler Norm和封闭的1形式的总和,则可以从边界距离数据中唯一将1形式恢复到电势字段。我们还显示了Randers指标的边界刚度结果,其中可逆的Finsler Norm是由边界刚性的Riemannian指标引起的。我们的定理将Riemannian边界刚度概括为一些非可逆的Finsler歧管。我们提供了地震学的应用,其中地震波在移动的介质中传播。
If a non-reversible Finsler norm is the sum of a reversible Finsler norm and a closed 1-form, then one can uniquely recover the 1-form up to potential fields from the boundary distance data. We also show a boundary rigidity result for Randers metrics where the reversible Finsler norm is induced by a Riemannian metric which is boundary rigid. Our theorems generalize Riemannian boundary rigidity results to some non-reversible Finsler manifolds. We provide an application to seismology where the seismic wave propagates in a moving medium.