论文标题
通过中性位置偏移控制的双向微型机器人机器人
Bidirectional Microrocker Bots Controlled via Neutral Position Offset
论文作者
论文摘要
纳米级3D打印和微加工技术的最新进展使对微生物的研究重新活化。但是,迄今为止,使用紧凑的致动设置对生物环境上微型机器人的精确运动控制仍然具有挑战性。这项工作提出了一种新颖的控制机制和接触设计,可以通过偏向微型机器人的中性位置来实现双向转向。配备摇杆与基材接触的微型机器人,因此Microlocker Bot能够在平坦和非灯泡生物表面上的前进和向后移动。 100UM by 113um by 36um机器人是通过两光刻印刷图打印的,随后用镍薄膜沉积。在相对较小的静态磁场下,MicroRocker机器人向前或向后倾斜,以使薄膜磁化方向与磁场线对齐。当与振荡的磁场结合使用时,机器人在倾向的方向上进行棍棒滑动运动,该方向由中性位置倾斜决定。 Microlocker机器人进一步配备了可以选择性参与的锋利的机械尖端。当对驱动锯齿波形的频率和偏移进行优化时,机器人向前和向后传播至100UM/s(每秒1个体长),显示出非常线性的轨迹。最后,为了证明Microcrocker机器人在与生物表面直接接触时的功能,我们证明了机器人在Dracaena Faprans叶的表面向前和向后穿越的能力,并在其机械尖端上颠覆/互动。
The recent advancements in nanoscale 3D printing and microfabrication techniques have reinvigorated research on microrobots. However, precise motion control of the microrobots on biological environments using compact actuation setups remains challenging to date. This work presents a novel control mechanism and contact design that enables bidirectional steering via biasing the neutral position of the microrobot. Equipped with rockers to contact the substrate, the microrobot, hence microrocker bot, is capable of well-controlled forward and backward movement on flat and non-flat biological surfaces. The 100um by 113um by 36um robots were 3D printed via two-photon lithography and subsequently deposited with nickel thin films. Under a relatively small static magnetic field, the microrocker bot tilts either forward or backward to align the thin film magnetization direction with the magnetic field lines. When combined with an oscillating magnetic field, the robot undergoes stick-slip motion in the predisposed direction, dictated by the neutral position tilt. The microrocker bots are further equipped with sharp mechanical tips that can be selectively engaged. When the frequency and offset of the actuation sawtooth waveform are optimized, the robot travels up to 100um/s (1 body length per second) forward and backward showing very linear trajectories. Finally, to prove the functionality of the microrocker bots in direct contact with biological surfaces, we demonstrate the robot's ability to traverse forward and backward on the surface of a Dracaena Fragrans leaf, and upend/engage on its mechanical tip.