论文标题

使用深度学习方法的复杂数据标记:渔业声学的教训

Complex data labeling with deep learning methods: Lessons from fisheries acoustics

论文作者

Sarr, J. M. A., Brochier, T., Brehmer, P., Perrot, Y., Bah, A., Sarré, A., Jeyid, M. A., Sidibeh, M., Ayoub, S. El

论文摘要

全世界使用海床底部到海面的声学反向散射信号的定量和定性分析,用于鱼类种群评估和海洋生态系统监测。收集了大量的原始数据,但需要乏味的专家标签。本文重点介绍了一个案例研究,地面真相标签是非很明显的:Echogragron标签,这是耗时的,对于渔业质量和生态分析至关重要。我们研究了这些任务如何从监督的学习算法中受益,并证明接受非平稳数据集训练的卷积神经网络可用于强调需要人类专家校正的新数据集的一部分。这种方法的进一步发展为渔业声学中标记过程的标准化铺平了道路,这是一个不可思议的数据标记过程的一个很好的案例研究。

Quantitative and qualitative analysis of acoustic backscattered signals from the seabed bottom to the sea surface is used worldwide for fish stocks assessment and marine ecosystem monitoring. Huge amounts of raw data are collected yet require tedious expert labeling. This paper focuses on a case study where the ground truth labels are non-obvious: echograms labeling, which is time-consuming and critical for the quality of fisheries and ecological analysis. We investigate how these tasks can benefit from supervised learning algorithms and demonstrate that convolutional neural networks trained with non-stationary datasets can be used to stress parts of a new dataset needing human expert correction. Further development of this approach paves the way toward a standardization of the labeling process in fisheries acoustics and is a good case study for non-obvious data labeling processes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源