论文标题
变异多尺度非参数回归:算法和实现
Variational Multiscale Nonparametric Regression: Algorithms and Implementation
论文作者
论文摘要
许多现代统计上有效的方法都带有巨大的计算挑战,通常会导致大规模优化问题。在这项工作中,我们检查了非参数回归中最近开发的估计方法的此类计算问题,并具有对图像降级的特定观点。我们尤其考虑某些变异多尺度估计器,这些估计量在统计学上是最佳意义上最佳的,但在计算中含量很大。这样的估计器被计算为所有估计器类别平滑度函数(例如电视标准)的最小化器,以至于其相对于给定的多尺度词典的系数都不具有统计学意义。 SO获得的多尺度Nemirowski-Dantzig估计器(Mind)可以结合任何凸平的功能,并将其与适当的词典结合使用,包括小波,库和剪切。通常,思维的计算需要解决高维约束的凸优化问题,并使用统计多尺度测试标准引起的约束结构的特定结构。为了明确解决这一问题,我们讨论了三种不同的算法方法:Chambolle-Pock,ADMM和Semismooth Newton算法。提出了算法细节和明确的实现,然后在模拟研究和各种测试图像中进行数值比较。因此,在大多数情况下,我们建议使用Chambolle-Pock算法快速收敛。我们强调的是,我们的分析也可以转移到信号恢复和其他降解问题上,以便在可能从相似对象结构的数据贴片中借用统计强度时恢复更多的通用对象。
Many modern statistically efficient methods come with tremendous computational challenges, often leading to large-scale optimisation problems. In this work, we examine such computational issues for recently developed estimation methods in nonparametric regression with a specific view on image denoising. We consider in particular certain variational multiscale estimators which are statistically optimal in minimax sense, yet computationally intensive. Such an estimator is computed as the minimiser of a smoothness functional (e.g., TV norm) over the class of all estimators such that none of its coefficients with respect to a given multiscale dictionary is statistically significant. The so obtained multiscale Nemirowski-Dantzig estimator (MIND) can incorporate any convex smoothness functional and combine it with a proper dictionary including wavelets, curvelets and shearlets. The computation of MIND in general requires to solve a high-dimensional constrained convex optimisation problem with a specific structure of the constraints induced by the statistical multiscale testing criterion. To solve this explicitly, we discuss three different algorithmic approaches: the Chambolle-Pock, ADMM and semismooth Newton algorithms. Algorithmic details and an explicit implementation is presented and the solutions are then compared numerically in a simulation study and on various test images. We thereby recommend the Chambolle-Pock algorithm in most cases for its fast convergence. We stress that our analysis can also be transferred to signal recovery and other denoising problems to recover more general objects whenever it is possible to borrow statistical strength from data patches of similar object structure.