论文标题

带有变异量子生成对抗网络的异常检测

Anomaly detection with variational quantum generative adversarial networks

论文作者

Herr, Daniel, Obert, Benjamin, Rosenkranz, Matthias

论文摘要

生成对抗网络(GAN)是一个机器学习框架,该框架包括一个生成模型,用于从目标分布和一个判别模型进行采样,以评估样品与目标分布的接近度。 gan在成像或异常检测中表现出很强的性能。但是,他们患有训练不稳定性,而采样效率可能会受到经典抽样程序的限制。我们介绍了各种量子古典的Wasserstein gans来解决这些问题,并将该模型嵌入了用于异常检测的经典机器学习框架中。古典Wasserstein Gans通过使用更适合梯度下降的成本功能来提高训练稳定性。我们的模型用杂种量子古典神经网取代了Wasserstein Gans的发电机,并使经典的判别模型保持不变。这样,高维经典数据只进入经典模型,而不必在量子电路中制备。我们在信用卡欺诈数据集上演示了此方法的有效性。对于此数据集,我们的方法以$ f_1 $分数表示与经典方法相同的性能。我们分析了电路ANSATZ,层宽度和深度,神经净结构参数初始化策略以及采样噪声对收敛和性能的影响。

Generative adversarial networks (GANs) are a machine learning framework comprising a generative model for sampling from a target distribution and a discriminative model for evaluating the proximity of a sample to the target distribution. GANs exhibit strong performance in imaging or anomaly detection. However, they suffer from training instabilities, and sampling efficiency may be limited by the classical sampling procedure. We introduce variational quantum-classical Wasserstein GANs to address these issues and embed this model in a classical machine learning framework for anomaly detection. Classical Wasserstein GANs improve training stability by using a cost function better suited for gradient descent. Our model replaces the generator of Wasserstein GANs with a hybrid quantum-classical neural net and leaves the classical discriminative model unchanged. This way, high-dimensional classical data only enters the classical model and need not be prepared in a quantum circuit. We demonstrate the effectiveness of this method on a credit card fraud dataset. For this dataset our method shows performance on par with classical methods in terms of the $F_1$ score. We analyze the influence of the circuit ansatz, layer width and depth, neural net architecture parameter initialization strategy, and sampling noise on convergence and performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源