论文标题

使用周期性模式开采从时间序列数据中提取季节渐进模式

Extracting Seasonal Gradual Patterns from Temporal Sequence Data Using Periodic Patterns Mining

论文作者

Lonlac, Jerry, Doniec, Arnaud, Lujak, Marin, Lecoeuche, Stephane

论文摘要

挖掘频繁的发作旨在从时间数据序列中恢复顺序模式,然后可以将其用于预测事先发生相关事件的发生。另一方面,以“当x增加/减少,y增加/减少”形式捕获复杂属性的逐渐变化的逐渐模式在许多现实世界应用中都起着重要作用,在许多现实世界中,必须处理大量复杂数值数据的大量。最近,这些模式从数据挖掘社区中受到了关注,探索了时间数据,这些数据提出了从时间数据中自动提取渐进模式的方法。但是,据我们所知,尚未提出任何方法来提取以相同时间间隔出现在许多时间数据中的相同时间间隔的渐进模式,尽管这种模式可能会为某些应用程序(例如电子商务)增加知识。在本文中,我们建议从我们称为季节性渐进模式的时间数据序列中提取定期重复属性的共同变化。为此,我们将挖掘季节性渐进模式的任务作为多个序列采矿周期性模式的问题,然后利用周期性模式挖掘算法来提取季节性渐进模式。我们讨论了这些模式的特定特征,并提出了一种基于多个序列共有的采矿周期性频繁模式提取的方法。我们还提出了与这些季节性渐进模式相关的新的抗官方支持定义。从一些现实世界数据集获得的说明结果表明,提出的方法是有效的,并且可以通过过滤大量的非季节模式来识别季节性图案来提取小型模式。

Mining frequent episodes aims at recovering sequential patterns from temporal data sequences, which can then be used to predict the occurrence of related events in advance. On the other hand, gradual patterns that capture co-variation of complex attributes in the form of " when X increases/decreases, Y increases/decreases" play an important role in many real world applications where huge volumes of complex numerical data must be handled. Recently, these patterns have received attention from the data mining community exploring temporal data who proposed methods to automatically extract gradual patterns from temporal data. However, to the best of our knowledge, no method has been proposed to extract gradual patterns that regularly appear at identical time intervals in many sequences of temporal data, despite the fact that such patterns may add knowledge to certain applications, such as e-commerce. In this paper, we propose to extract co-variations of periodically repeating attributes from the sequences of temporal data that we call seasonal gradual patterns. For this purpose, we formulate the task of mining seasonal gradual patterns as the problem of mining periodic patterns in multiple sequences and then we exploit periodic pattern mining algorithms to extract seasonal gradual patterns. We discuss specific features of these patterns and propose an approach for their extraction based on mining periodic frequent patterns common to multiple sequences. We also propose a new anti-monotonous support definition associated to these seasonal gradual patterns. The illustrative results obtained from some real world data sets show that the proposed approach is efficient and that it can extract small sets of patterns by filtering numerous nonseasonal patterns to identify the seasonal ones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源