论文标题
节点横截面参数化的图理论方法
The Graph Theoretic Approach for Nodal Cross Section Parameterization
论文作者
论文摘要
目前,使用历史和分支在不同条件下,通过反应堆物理学专业知识以及试验和错误开发了在不同条件下在不同条件下计算横截面的参数化模型。在本文中,我们描述了一种新的图理论方法(GTA)的开发和应用,以开发用于评估淋巴结扩散代码中横截面的表达式。 GTA将现有的节点横截面模型概括为``非正交的''且可扩展的尺寸参数空间。此外,它利用图表上的严格演算来制定部分衍生物。可以通过多种方式生成GTA横截面模型。在我们目前的工作中,我们探索了逐步回归和参数化横截面的完整泰勒系列扩展,以开发表达式以评估它们。为了建立GTA的原理证明,我们将GTA生成的横截面评估的数值结果与规范PWR案例矩阵和AP1000晶格设计的传统模型进行了比较。
Presently, models for the parameterization of cross sections for nodal diffusion nuclear reactor calculations at different conditions using histories and branches are developed from reactor physics expertise and by trial and error. In this paper we describe the development and application of a novel graph theoretic approach (GTA) to develop the expressions for evaluating the cross sections in a nodal diffusion code. The GTA generalizes existing nodal cross section models into a ``non-orthogonal'' and extensible dimensional parameter space. Furthermore, it utilizes a rigorous calculus on graphs to formulate partial derivatives. The GTA cross section models can be generated in a number of ways. In our current work we explore a step-wise regression and a complete Taylor series expansion of the parameterized cross sections to develop expressions to evaluate them. To establish proof-of-principle of the GTA, we compare numerical results of GTA generated cross section evaluations with traditional models for canonical PWR case matrices and the AP1000 lattice designs.