论文标题
Deep-Hoseq:多模式情感分析的深度高阶序列融合
Deep-HOSeq: Deep Higher Order Sequence Fusion for Multimodal Sentiment Analysis
论文作者
论文摘要
多模式情感分析利用多种异构方式进行情感分类。最近的多模式融合方案自定义了LSTM,以发现模式内动力学和设计复杂的注意机制,以发现多模式序列的模式间动力学。尽管强大,但这些方案完全依靠注意机制,由于两个主要缺点1)欺骗性的注意力面具,以及2)训练动力学。然而,需要进行艰苦的努力来优化这些合并体系结构的超参数,尤其是其受到注意方案约束的定制设计的LSTM。在这项研究中,我们首先提出了一个通用网络,通过利用基本LSTM和基于张量的卷积网络来发现模式内和模式间动力学。然后,我们提出了独特的网络,以将时间粒度封装在模态之间,这是在异步序列中提取信息时必不可少的。然后,我们通过融合层整合了这两种信息,并将我们的新型多模式融合方案称为Deep-Hoseq(具有更高级常见和独特序列信息的深网络)。所提出的深霍斯克有效地从多模式序列中发现了最重要的信息,并且在CMU-Mosei和CMU-Mosei和CMU-MOSI基准数据集上经验证明了使用两种信息的有效性。我们提出的Deep-Hoseq的源代码可在https://github.com/sverma88/deep-hoseq - icdm-2020上找到。
Multimodal sentiment analysis utilizes multiple heterogeneous modalities for sentiment classification. The recent multimodal fusion schemes customize LSTMs to discover intra-modal dynamics and design sophisticated attention mechanisms to discover the inter-modal dynamics from multimodal sequences. Although powerful, these schemes completely rely on attention mechanisms which is problematic due to two major drawbacks 1) deceptive attention masks, and 2) training dynamics. Nevertheless, strenuous efforts are required to optimize hyperparameters of these consolidate architectures, in particular their custom-designed LSTMs constrained by attention schemes. In this research, we first propose a common network to discover both intra-modal and inter-modal dynamics by utilizing basic LSTMs and tensor based convolution networks. We then propose unique networks to encapsulate temporal-granularity among the modalities which is essential while extracting information within asynchronous sequences. We then integrate these two kinds of information via a fusion layer and call our novel multimodal fusion scheme as Deep-HOSeq (Deep network with higher order Common and Unique Sequence information). The proposed Deep-HOSeq efficiently discovers all-important information from multimodal sequences and the effectiveness of utilizing both types of information is empirically demonstrated on CMU-MOSEI and CMU-MOSI benchmark datasets. The source code of our proposed Deep-HOSeq is and available at https://github.com/sverma88/Deep-HOSeq--ICDM-2020.