论文标题

双Komar Mass,Torsion和Riemann-Cartan歧管

Dual Komar Mass, Torsion and Riemann-Cartan Manifolds

论文作者

Kol, Uri

论文摘要

双Komar质量概括了螺母参数的概念,类似于电动力学中的磁电荷。在渐近平坦的空间中,它与双重倾斜电荷相吻合。除非引入与Misner弦的锥形奇异性,否则双重质量在riemannian歧管上相同消失。在本文中,我们提出了一种替代方法来局部采购双重质量。我们表明,这可以通过扩大理论的相空间来完成,以允许使用局部字段违反代数比安奇身份。符合此要求的爱因斯坦重力的最小扩展称为爱因斯坦 - 卡丹理论。我们的主要结果是,在Riemann-Cartan歧管上,双Komar质量不会消失,并且由局部1形式引力电流的体积积分给出,该电流是扭转的函数。

The dual Komar mass generalizes the concept of the NUT parameter and is akin to the magnetic charge in electrodynamics. In asymptotically flat spacetimes it coincides with the dual supertranslation charge. The dual mass vanishes identically on Riemannian manifolds in General Relativity unless conical singularities corresponding to Misner strings are introduced. In this paper we propose an alternative way to source the dual mass locally. We show that this can be done by enlarging the phase space of the theory to allow for a violation of the algebraic Bianchi identity using local fields. A minimal extension of Einstein's gravity that meets this requirement is known as the Einstein-Cartan theory. Our main result is that on Riemann-Cartan manifolds the dual Komar mass does not vanish and is given by a volume integral over a local 1-form gravitational-magnetic current that is a function of the torsion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源