论文标题

Majorana模式的统一对称性保护的非亚洲统计

Unitary Symmetry-Protected Non-Abelian Statistics of Majorana Modes

论文作者

Hong, Jian-Song, Poon, Ting-Fung Jeffrey, Zhang, Long, Liu, Xiong-Jun

论文摘要

受对称保护的拓扑超导体(TSC)可以在其边缘或涡旋核心托管多个Majorana零模式(MZM),而这种系统中的Majoraana编织是否通常是非 - 亚伯利亚人,这通常是一个悬而未决的问题。在这里,我们在理论上揭示了MZMS的统一对称性保护的非亚洲统计,并提出了实验实现。我们表明,每种托管$ n $统一对称保护的MZMS通常都将其构成两种涡流,从而使$ n $独立的部门构成了两个不同的部门,每个部门编织了两种不同的Majorana模式。这使得统一对称性保护的非亚洲统计数据。作为一个具体的例子,我们证明了自旋三旋转TSC中提出的非亚洲统计数据,该TSC在每个涡流处载有两个MZM,有趣的是,可以精确地映射到量子异常的霍尔绝缘子。因此,可以在后一种绝缘阶段验证统一对称性保护的非亚洲统计数据,并应用了研究各种拓扑量子门的应用。最后,我们提出了一种新型的实验方案,以在光学拉曼晶格中实现本研究。我们的工作为基于Majorana的拓扑量子计算开辟了新的途径。

Symmetry-protected topological superconductors (TSCs) can host multiple Majorana zero modes (MZMs) at their edges or vortex cores, while whether the Majorana braiding in such systems is non-Abelian in general remains an open question. Here we uncover in theory the unitary symmetry-protected non-Abelian statisitcs of MZMs and propose the experimental realization. We show that braiding two vortices with each hosting $N$ unitary symmetry-protected MZMs generically reduces to $N$ independent sectors, with each sector braiding two different Majorana modes. This renders the unitary symmetry-protected non-Abelian statistics. As a concrete example, we demonstrate the proposed non-Abelian statistics in a spin-triplet TSC which hosts two MZMs at each vortex and, interestingly, can be precisely mapped to a quantum anomalous Hall insulator. Thus the unitary symmetry-protected non-Abelian statistics can be verified in the latter insulating phase, with the application to realizing various topological quantum gates being studied. Finally, we propose a novel experimental scheme to realize the present study in an optical Raman lattice. Our work opens a new route for Majorana-based topological quantum computation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源